
4/18/2019 Dragonchain | Dragonchain Architecture

https://dragonchain.github.io/architecture 1/20

DRAGONCHAIN ARCHITECTURE
VERSION 3 - NOVEMBER 2016

[DRAFT]

Joe Roets - j03 - joe@dragonchain.org

TABLE OF CONTENTS

DRAGONCHAIN ARCHITECTURE
ARCHITECTURAL GOALS
ARCHITECTURAL ELEMENTS

ABSTRACTION OF PROOF
CHECKPOINTING AND PROOF OF EXISTENCE

TRANSACTION DEFINITION
HEADER
PAYLOAD
SIGNATURE
CLASSES

BLOCK DEFINITION
VERIFICATION AND CONSENSUS

LEVEL 1 - BUSINESS (APPROVAL) VERIFICATION
LEVEL 2 - ENTERPRISE (VALIDATION) VERIFICATION
LEVEL 3 - NETWORK DIVERSITY VERIFICATION
LEVEL 4 - EXTERNAL PARTNER (NOTARY) VERIFICATION
LEVEL 5 - PUBLIC CHECKPOINT
LEVEL X - PROPRIETARY CONTEXT VERIFICATION
BLOCKCHAIN OF BLOCKCHAINS CONCEPT

CURRENCY
CURRENCY MODELING
BITCOIN ADDRESSING

4/18/2019 Dragonchain | Dragonchain Architecture

https://dragonchain.github.io/architecture 2/20

INTEROPERABILITY

SMART CONTRACTS
TURING COMPLETENESS
TRANSACTIONS, ATOMICITY, AND ROLLBACK
DISTRIBUTED EXECUTION
DRAGONCHAIN SMART CONTRACTS

SUBSCRIPTION DATA FEED
NETWORK MANAGEMENT

DATA DISTRIBUTION
NODE DISCOVERY
NETWORK MARKETPLACE
NODE QUALITY ASSESSMENT
VERIFICATION RECEIPT
IMPLEMENTATION OPTIONS

INTEROPERABILITY AND PROPOSED STANDARDS
CHECKPOINTING & WRAPPING
SUBCONSENSUS
ADOPTION

DRAGONCHAIN ARCHITECTURE - COPYRIGHT © 2016 JOE ROETS AND SUPER HAPPY
DRAGON LUCKY

DRAGONCHAIN ARCHITECTURE

The purpose of this document is to outline and communicate the architecture and
design of a blockchain platform which will allow ease of integration for real business
applications. In the author’s opinion, there is a growing need for simpli�ed blockchain
integration. The decentralized and singular approach to blockchain implementation is
sometimes at odds with the real business need to protect information and control
business processes. This document seeks to shed light and provide examples for the
successful implementation of enumerated blockchain architectural elements.

ARCHITECTURAL GOALS

1. Ease of integration of existing systems
2. Ease of development for traditional engineers and coders unfamiliar with

blockchain, distributed systems, and cryptography
3. Client server style and simple RESTful integration points for business integration
4. Simple architecture (�exible and usable for unforeseen applications)

4/18/2019 Dragonchain | Dragonchain Architecture

https://dragonchain.github.io/architecture 3/20

5. Provide protection of business data by default
6. Allow business focused control of processes
7. Fixed length period blocks
8. Short/fast blocks
9. Currency agnostic blockchain (multi-currency support)

10. No base currency
11. Interoperability with other blockchains public and private
12. Adoption of standards as they become available see W3C Blockchain Community

Group blockchain standardization
(https://github.com/w3c/blockchain/blob/master/standards.md) and Disney
Blockchain Standardization Notes (https://dragonchain.github.io/blockchain-
standardization)

ARCHITECTURAL ELEMENTS

ABSTRACTION OF PROOF

In Bitcoin and most other cryptocurrencies, we witness the use of “Proof of Work”
(PoW) algorithms as a basis for consensus in a “trustless” system. In this architecture,
“proof” will be abstracted and may be implemented in one or more ways for a given
blockchain. For some uses, one may desire to use a trust based system, for instance, in a
fully private blockchain system. One may also �nd value in a hybrid proof con�guration
that would see trust applied alongside limited Proof of Work to add additional security
against attack (i.e. a potential attacker would not only need to compromise or attain a
set of private keys, but would also need to perform computation to accomplish the
con�gured Proof to reassemble a given blockchain.

Proof Implementations:

1. Trust (Default)
2. Proof of Work (PoW)
3. Proof of Stake (PoS)
4. Other as yet determined algorithms

Given such an abstraction, a user would be able to con�gure one or more simultaneous
proofs to suit business need, whilst a system developer may build new proof
implementations as blockchain technology progresses.

https://github.com/w3c/blockchain/blob/master/standards.md
https://dragonchain.github.io/blockchain-standardization

4/18/2019 Dragonchain | Dragonchain Architecture

https://dragonchain.github.io/architecture 4/20

It is possible to conduct PoW even in the case of �xed time length block constructions
(see block construction discussion elsewhere in this paper) by spanning one or more
proof implementations across blocks. As an example, let’s say that we have a particular
use case that requires higher than normal security. If we assume that Trust is
implemented by default, but we desire to con�gure some amount of trustless
veri�cation, we may wish to con�gure some level of Proof of Work on our blockchain.
Depending upon the dif�culty level con�gured, and given the nature of PoW algorithms,
we may not see a PoW solution for every block. Some blocks would have no PoW, and
the PoW answer may only appear occasionally. In such a case, it may be reasonable to
con�gure two or more levels of PoW. A higher dif�culty proof may be tuned to appear
approximately every 20 minutes, and a lower dif�culty proof may be tuned to appear
approximately every 2 seconds. In the same manner other proofs such as PoS may be
applied simultaneously within a single chain. An interesting philosophical point is that
such proofs may be used in competition against a future attacker rather than as
competition with other miners for a block reward.

CHECKPOINTING AND PROOF OF EXISTENCE

Another element in the abstraction of proof is the further ability to hybridize by
checkpointing into other (public) blockchains. This can be seen as a �rst level or simple
interoperability between blockchains, public or private. Of particular potential value, is
the ability to ascertain risk by measuring a public blockchain’s attributes. That is, if tied
to a public blockchain which uses PoW such as Bitcoin, the system can estimate the
amount of hashpower that has been applied since the checkpoint and even extrapolate
that compute power to dollars spent. With this, a risk unit may be developed that shows
how much compute power would be needed (and how much that would cost) to
calculate the percentage likelihood of success in an attempt to counterfeit a given
artifact (e.g. a transaction of high value). In the same manner, tying a checkpoint to a
public blockchain based on PoS, the system could measure the amount of assets that
must be held (and likely sacri�ced) in order to counterfeit the transaction in question.
See discussion of Level 5 veri�cation below for more information.

TRANSACTION DEFINITION

A transaction is the basis with which all events or data transfers are recorded within the
blockchain platform. The system should de�ne a �exible and extensible standardized
transaction structure.

4/18/2019 Dragonchain | Dragonchain Architecture

https://dragonchain.github.io/architecture 5/20

Implementations options:

JSON with standardized structure
JWT (JSON Web Token)
Other encoded structure (with supporting libraries in multiple languages)

HEADER

Contains system or network de�ned standard standard metadata �elds for the
transaction.

Example �elds:

Transaction ID
Transaction type
Transaction class
Create timestamp
Transaction timestamp
Origin ID
Business organization and/or organization taxonomy
Actor
Entity

PAYLOAD

Arbitrary structure and content, de�ned at the business level and implemented or
controlled within the level 1 approval code.

Some level of structure within the payload (e.g. �elds and structures) may be
implemented as network-wide templates to be utilized and noted based upon the
optional transaction class header �eld. This will allow nodes to implement some
needed behavior de�ned at the Enterprise or network level, as well as simpli�cation of
capabilities such as currency. See below for examples of transaction class.

SIGNATURE

4/18/2019 Dragonchain | Dragonchain Architecture

https://dragonchain.github.io/architecture 6/20

Portion of the transaction holding a cryptographic signature to allow parties to prove
the source and/or that the contents of the transaction are unaltered since the signing
(i.e. tamper evident). The signature within the transaction should not be required from
the transaction source (e.g. client or 3rd party system) as some clients may not be
cryptographically enabled or aware of the blockchain platform. Alternatively, a client
system may for example invoke a process of multi-party signing prior to transaction
submission. Either way, the blockchain platform node’s Transaction Service component
should cryptographically sign any inbound transaction that it accepts for processing
(with its con�gured key pair).

Perceived requirements:

The structure should allow for multi-party and nested signings
The signature should hash all �elds within the signature structure itself minus hash
and signature to make the signature itself tamper evident
The structure should see re-use in the veri�cation record (block veri�cation)
signing process

Fields:

Signatory
Hash
Stripped Hash (for transaction signatures only - a hash of the full transaction with
the payload stripped - to allow level 2+ nodes to validate a transaction even when the
payload is not available)
Public Key
Signing Timestamp
Signature
Child Signature (optional)

Implementation options:

JWS (JSON Web Signature)
Custom JSON

CLASSES

4/18/2019 Dragonchain | Dragonchain Architecture

https://dragonchain.github.io/architecture 7/20

Some examples of possible transaction classes are:

Default (custom Level 1 business payload structure)
Currency
Provisioning
Network communications
Marketplace transaction
Information interoperability (foreign blockchain currency or information
payload)

BLOCK DEFINITION

Block de�nition may see multiple implementations, although there are more or less
common elements involved such as:

Block ID
Timestamp
Transactions
Hash of prior block
Proof (e.g. PoW, PoS) artifact
Signature
Block period
Verification attributes

An interesting part of block de�nition design that is often not considered of is the
question of when the block is formed. In Bitcoin or other PoW systems, a block is
formed when the PoW algorithm is solved for the current network dif�culty. This may
happen after 30 seconds or 30 minutes. It is variable and random, but the network seeks
to tune the dif�culty in order to tune the average block time to 10 minutes.

In trust based systems, there would be no absolute need to maintain a variable time
based block. In many real world systems, it is in fact seen as a detriment to its use that
Bitcoin cannot offer a �xed or faster average block time. In this architecture, we may
desire a more appropriate block time, such as a �xed time in seconds (e.g. 5 seconds).
The de�nition of such fast and �xed block times leads to a question of consensus, that
is, how does the entire network come to consensus every 5 seconds? With context

4/18/2019 Dragonchain | Dragonchain Architecture

https://dragonchain.github.io/architecture 8/20

based veri�cation and the concept of a “blockchain of blockchains” (discussed below),
the system comes to gradual consensus with risk controlled by individual business
users.

VERIFICATION AND CONSENSUS

We introduce here the concept of “context based veri�cation” to the blockchain
discussion. To illuminate, consider Bitcoin or any other existing blockchain
implementation. They primarily use a set proof algorithm (e.g. PoW) to assemble blocks
over time and to come to consensus over which blocks and which chain is the common,
agreed truth.

VANILLA BLOCKCHAIN STRUCTURE IS ONE DIMENSIONAL

In Dragonchain, with context based approval, we add another dimension to that design.
So the �rst level is achieved in a purely business context, that is with business logic
implemented to provide transaction approval and system logic to arrange those
transactions into blocks which are chained together. These blocks will have an abstract
proof integrated such as PoW, PoS, or trust. This �rst level of veri�cation can be
considered as analogous to other blockchains.

It is when other veri�cation contexts are added that we see added value to even trust
based systems.

Any given node should ideally allow con�guration to support or execute one or more of
the veri�cation phases described below.

4/18/2019 Dragonchain | Dragonchain Architecture

https://dragonchain.github.io/architecture 9/20

DRAGONCHAIN STRUCTURE IS LINKED BETWEEN BLOCKS AND VERIFICATION CONTEXTS

LEVEL 1 - BUSINESS (APPROVAL) VERIFICATION

Approval functionality is implemented and con�gured by the business integrator. This is
the placement for integration of “real world” value. Business logic de�ned by an
organization or blockchain platform user is con�gured to be executed by a blockchain
node.

Here also is where the transaction payload is de�ned by the business to be what is
needed for their purposes.

Transactions are arranged and passed to the provided business logic which will
determine approval or denial. Approved transactions will be assembled into a “block”
generically referred to as a “veri�cation record”.

The payload �eld of every transaction may be stripped before or after assembling the
�nal block in order to maintain control of the distribution of actual business data. That
is, no business payload data will be disbursed as part of the consensus process, and data

4/18/2019 Dragonchain | Dragonchain Architecture

https://dragonchain.github.io/architecture 10/20

will remain local on a Level 1 node unless the business owner explicitly pushes the data
to another node (e.g. for backup/DR), or explicitly allows an authorized node to pull the
data via a subscription feed.

LEVEL 2 - ENTERPRISE (VALIDATION) VERIFICATION

This context is de�ned Enterprise or network wide, and checks for block and individual
transaction validity in form, signature, and required data elements.

Veri�ed elements:

1. Block (veri�cation record) construction and signature
2. Individual transaction signatures
3. Individual transaction header elements (that all required header �elds are present)

A Level 2 node will assemble a new veri�cation record which will contain:

1. A list of valid transactions and a list of invalid transaction, and in this manner vote
on the validity of individual transactions.

2. The hash of the prior Level 2 record created by this node for the same origin (Level
1) node (thus creating a Level 2 blockchain)

3. The hash of the Level 1 block which was validated (thus providing a second
dimension to the blockchain)

4. Node owner identity information
5. Node deploy location (data center)
6. Node key management authority information

LEVEL 3 - NETWORK DIVERSITY VERIFICATION

De�ned enterprise wide, a Level 3 node will verify diversity of validation (Level 2)
veri�cations. That is, a Level 3 node will check the following criteria:

1. Count of Level 2 veri�cation records have been received
2. That those records have come from (con�gurable count) of unique business units
3. That those records have come from (con�gurable count) of unique deployment

locations
4. That those records have come from (con�gurable count) of unique key

management authorities

4/18/2019 Dragonchain | Dragonchain Architecture

https://dragonchain.github.io/architecture 11/20

This veri�cation context will ensure that validations of transactions are coming from a
suf�ciently diverse set of distributed sources. It also provides control and measurement
of network effect and provides distributed security as an attacker would be required to
attack multiple systems, businesses, and data centers in order to tamper with existing
data.

A Level 3 node will assemble a new veri�cation record containing:

1. Remnants of criteria met (e.g. Level 2 veri�cation record count, set of business
units, set of data centers).

2. The hash of the prior Level 3 record created by this node for the same origin (Level
1) node (thus creating a Level 3 blockchain)

3. The hash of the Level 2 veri�cation records which passed the criteria (thus
providing a second dimension to the blockchain)

LEVEL 4 - EXTERNAL PARTNER (NOTARY) VERIFICATION

De�ned network wide (Enterprise+), a level 4 node will provide a notary functionality to
the consensus process. Hosted by an external partner, a level 4 node would
cryptographically sign any level 3 veri�cation records that it receives. This function
allows the Level 4 node to act as an independent witness to level 3 veri�cations.

LEVEL 5 - PUBLIC CHECKPOINT

A Level 5 node will provide a bridge to one or more public blockchains and allow clients
to interact with them (e.g. Bitcoin, Ethereum, Litecoin, etc.).

An important feature that this would provide is that of checkpointing, or placing a hash
of an artifact for “proof of existence” on a public blockchain. For checkpointing
operations, the Level 5 node will accept a transaction, a block veri�cation of any level,
an arbitrary string, or an arbitrary hash. The argument will be hashed and this hash
added to a transaction placed on the public blockchain(s). The existence of this hash can
be used to prove that the artifact was in existence and at a certain state using public
blockchain data. An organization may use this proof to measure and mitigate risk based
upon the estimate or calculation of hashpower expended since that time (in the case of
a proof of work blockchain). For example, a $2 Million transaction may be passed to a
Level 5 node to be placed as soon as possible on the Bitcoin blockchain, and at some
point in time later, a party may use that information as a source to measure the amount

4/18/2019 Dragonchain | Dragonchain Architecture

https://dragonchain.github.io/architecture 12/20

of hashpower that has been expended since that time, calculate the probability that an
attacker could successfully counterfeit that Bitcoin block given a particular percentage
of global hashpower, and extrapolate or estimate the cost to expend that hashpower (as
well as the sacri�ce of hardware and/or currency due to network collapse). If this
process results in a risk evaluation that is satisfactory to the business, the transaction
can be trusted and accepted.

Another important aspect of the public bridge functionality is the ability to track assets
between the private and public side. That is, given an internal currency implemented to
use Bitcoin addresses (see currency section elsewhere in this document), a token may
be issued on Bitcoin using public APIs or services and this token may live in both the
private blockchain and the Bitcoin public blockchain. Owners of the keys or wallet
would be able to transfer the token or asset with either public or private blockchain
interactions. The Level 5 node may be used to track this asset between the blockchains
as well as keep them in sync with each other.

LEVEL X - PROPRIETARY CONTEXT VERIFICATION

It should be possible for a business, Enterprise, or the entire network to de�ne a custom
veri�cation context and have it executed to meet business needs.

A node may be con�gured to run an arbitrary veri�cation context which would be
triggered in the following manners:

1. By the receipt of a broadcast from another node (in sequential or non-sequential
phase)

2. By a timed or periodic trigger (e.g. cron)
3. By noti�cation via observer pattern

BLOCKCHAIN OF BLOCKCHAINS CONCEPT

This architecture may be best understood as a “blockchain of blockchains”. That is, a
business approval function node (see Level 1 below) functions much as a standard
blockchain on a 1 dimensional level. However, each business concern will generally have
its own node to do this work, each with its own blockchain. It is where these
blockchains become combined that consensus is reached.

4/18/2019 Dragonchain | Dragonchain Architecture

https://dragonchain.github.io/architecture 13/20

BLOCKCHAIN OF BLOCKCHAINS

CURRENCY

This architecture should be multi-currency capable. That is, generally that if a currency
use case is de�ned, that a node(s) may de�ne a currency and support its use. More than
one currency may be in use concurrently on the network as a whole.

That said, this architecture should not de�ne a “base” currency, or one that the system
itself runs upon. If such a use case arises (as indeed it is very likely to see value in the
availability of a currency whereby nodes may pay each other for veri�cations), it is the
philosophy of this architecture that a node should be con�gured to create and maintain
that currency. This will allow a more �exible development of marketplaces than any
attempt to de�ne that early in the development of the platform.

The implementation of this architecture should likely provide one or more templated or
con�gurable currencies for ease of deployment. Such implementations may de�ne such
things as mining or minting algorithms, addressing, wallet management, and etc. They
should also be extensible by users as possible for further experimentation and
customization.

4/18/2019 Dragonchain | Dragonchain Architecture

https://dragonchain.github.io/architecture 14/20

CURRENCY MODELING

The architecture allows a user to model currency and monetize late in their design. It is
possible for a user to place information from many sources atop the blockchain, watch
its use over time, and determine its value based upon business and customer priorities.
At this point, assets and activities can be monetized and a mining or minting algorithm
may be developed which will incentivize a business’ employees, teams, or customers.
This process of quantify, monetize, and incentivize may be one of endless tuning, but
would provide a transparent economic system.

There is potential for this framework to provide agility in organizations where data
providers are enabled to provide immediate and early access to research data, reports,
and other information to projects that would not otherwise ever see such data, as it
would typically require top-down organizational approval at great cost and risk. The use
of such data could be tracked and its value determined, leading to direct monetization
and a bottom-up funding mechanism.

BITCOIN ADDRESSING

The base implementation should likely default (at least for the foreseeable future) to
utilize Bitcoin addressing and cryptography in order to leverage the ever growing
external Bitcoin ecosystem. For example, use of Bitcoin cryptography in a private
currency will enable the transparent use of hardware signing wallets for internal use
(e.g. KeepKey, Trezor, Ledger). Another example is that of tokenization, whereby one
may directly integrate Bitcoin tokenization provider technology for use with an internal
blockchain (e.g. Counterparty or Tokenly).

INTEROPERABILITY

With the transaction class header �eld, it is possible to wrap foreign cryptocurrency
transactions within a private blockchain transaction.

SMART CONTRACTS

Many questions arise in regards to blockchain based “smart contracts”…

TURING COMPLETENESS

4/18/2019 Dragonchain | Dragonchain Architecture

https://dragonchain.github.io/architecture 15/20

Top of this list is Turing completeness. Bitcoin is purposely not Turing complete. It is as
complex as necessary to provide the capabilities needed for its application.

Some blockchain implementations such as Ethereum are Turing complete. This allows
some very interesting applications, yet brings some risk and dif�culty in
implementation. A smart contract must be executed within a special and veri�ed
container or virtual machine to insure deterministic results no matter the hardware or
operating system upon which the node is running. Various aspects of the smart contract
must be monitored (e.g. loops) for failure or otherwise unexpected or unauthorized
action.

TRANSACTIONS, ATOMICITY, AND ROLLBACK

A smart contract system may need to provide some level of controlled or automated
transaction and rollback capability to ensure that any given action will only take effect if
the entire transaction operation is successfully completed.

DISTRIBUTED EXECUTION

Where is the smart contract executed? Is it on the distributed (calling) node?

DRAGONCHAIN SMART CONTRACTS

The architecture calls for de�nition of “approval context” code to be con�gured or
deployed on Level 1 business nodes. This approval code can be considered a smart
contract. By default, this smart contract will only be executed on that Level 1 node(s),
and under the direct control of the business owner. This provides a familiar
client/server interface to the creation of a smart contract, and simpli�es the risk
evaluation. The attack vectors are more common and known to modern engineers.
Turing completeness is provided just as within any web service platform.

A smart contract may well be distributed, and may be executed on a pay per play basis.
In this case, many of the risks with smart contracts described above apply, yet it can be
assumed that the parties will have a trust relationship inside of an organization to draw
on and the provisioning of the code may include necessary legal agreements.

4/18/2019 Dragonchain | Dragonchain Architecture

https://dragonchain.github.io/architecture 16/20

In much the same way, a group may host smart contracts as a IT support business, and
provide varying plans for chargeback/payment.

A smart contract may be employed on a node in the following manners:

Hardcoded in a forked codebase
Con�gured (with smart contract code deployed on system)
Delivered via blockchain (admin would send multi-signed transaction with smart
contract, start date, etc.)

SUBSCRIPTION DATA FEED

As transaction payloads are stripped prior to any broadcast within the consensus
process, nodes will share business data as necessary via subscription data feeds. This
amounts to a push or pull mechanism where some subset of a nodes transactions are
continuously fed to another node.

In the case where a node needs another node’s data in order to “mash up” with its own
data to serve a customer, that node would con�gure to request access from the “origin
node” which owns the data. This request may come with authentication or authorization
information and the origin node may approve or deny the request. The requesting node
may also provide criteria for the data feed such as only a certain transaction type, only
transactions that have surpassed a certain level of veri�cation on the network, or only
involving a certain identity. In this way, the requesting node will have a local cache of
only the data that it needs, and it will be able to answer its customers with con�dence
that the data is unaltered and veri�ed without the need to reach out to the origin
business services in the future.

In the case where an origin node would like to distribute its data (i.e. for backup or
disaster recovery), the node may pay for such a service and continuously push the data
to that node. The backup node will be able to verify that the data is error free upon
receipt and periodic audit.

NETWORK MANAGEMENT

4/18/2019 Dragonchain | Dragonchain Architecture

https://dragonchain.github.io/architecture 17/20

For a blockchain network system, many typical elements will necessarily exist such as
provisioning, discovery, maintenance of available and quality nodes, etc. The
architecture will however take some philosophical positions on the con�guration and
maintenance of the network.

All considerations for network and communications management should in this
architecture be made from the individual node context. Such decisions as which nodes
to connect with should be decentralized decisions made by each node independently.
There may well be mechanisms for central management of hints or starting lists of
guaranteed available nodes within an Enterprise, but no attempt should be made to
centralize the connection requirements of the network.

DATA DISTRIBUTION

By default, no transaction payload (business) data should leave an origin (owning) node
nor be propagated across the network. As part of the consensus and network
communications, all transaction payloads are to be stripped prior to broadcasting.

Only when explicitly authorized by the origin node are the payloads and full
transactions caused to be broadcast to authorized nodes.

NODE DISCOVERY

Node discovery should take place via peer to peer request.

NETWORK MARKETPLACE

IMPORTANT: Any notion of marketplace or currency with which nodes may trade or
hire out veri�cations should not be implemented in the system infrastructure, but
rather as an add-on currency implementation on a node within the blockchain
network. In this manner, the architecture will remain �exible and open to new ideas or
unforeseen requirements.

NODE QUALITY ASSESSMENT

4/18/2019 Dragonchain | Dragonchain Architecture

https://dragonchain.github.io/architecture 18/20

A node should track and ascertain the quality of connected and disconnected individual
peers. Considering currently connected and disconnected peers separately, a node
should track attributes such as:

Average latency of the connection (periodically assessed)
Signing success rate
Rebroadcast counts
Average veri�cation time
Deploy location (for diversity criteria)
Owner (for diversity criteria)
Unsuccessful connection attempts
Last connection attempt
Node success in gaining further levels of context based veri�cation

A node should conduct periodic assessment of connected nodes more often than
disconnected nodes, however over a reasonable span, the node should assess quality of
disconnected nodes in order to have necessary intelligence to prioritize peer
connections should a large portion of connected nodes become unavailable.

VERIFICATION RECEIPT

A broadcast of a veri�cation record to a higher level veri�cation node should provide a
receipt message notifying success or failure, and if successful, should include the
veri�cation record as signed by the higher level node. This same mechanism should be
passed further down the line to reach the origin node. Although it is a design
consideration, something in the manner of an asynchronous reply to another broadcast
call may be an appropriate mechanism to provide such capability.

IMPLEMENTATION OPTIONS

Custom (e.g. Apache Thrift)
RESTful service calls
Distributed database framework with replication

INTEROPERABILITY AND PROPOSED
STANDARDS

4/18/2019 Dragonchain | Dragonchain Architecture

https://dragonchain.github.io/architecture 19/20

There are many avenues to consider for the question of interoperability with other
blockchain systems.

CHECKPOINTING & WRAPPING

One may choose to connect transactions or other artifacts via checkpointing (see Level
5 - Public Checkpoint above) or by wrapping a foreign transaction or artifact within a
Dragonchain transaction (see foreign currency transaction header above).

SUBCONSENSUS

A business may choose to employ another blockchain at any level of the veri�cation
process. For example, to provide a decentralized Level 1 approval implementation, one
may choose to employ Bitcoin or other proof of work based blockchain to come to
consensus on a currency transactions.

ADOPTION

The architecture should be expected to adopt standards as they become available.

W3C Blockchain Community Group blockchain standardization
(https://github.com/w3c/blockchain/blob/master/standards.md)
Disney Blockchain Standardization Notes
(https://dragonchain.github.io/blockchain-standardization)

DRAGONCHAIN ARCHITECTURE - COPYRIGHT © 2016 JOE ROETS AND SUPER HAPPY DRAGON LUCKY

Copyright 2016 Joe Roets and Super Happy Dragon Lucky

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

https://github.com/w3c/blockchain/blob/master/standards.md
https://dragonchain.github.io/blockchain-standardization

